At point B, draw BE ⊥ PQ and at point C, draw
CF ⊥ RS.
∠1 = ∠2 …(i)
(Angle of incidence is equal to angle of reflection)
∠3 = ∠4 …(ii) [Same reason]
Also, ∠2 = ∠3 ... (iii) [Alternate angles]
⇒ ∠1 = ∠4 [From (i), (ii), and (iii)]
⇒ 2∠1 = 2∠4
⇒ ∠1 + ∠1 = ∠4 + ∠4
⇒ ∠1 + ∠2 = ∠3 + ∠4 [From (i) and (ii)]
⇒ ∠BCD = ∠ABC Hence, AB || CD. [Alternate angles are equal] Proved.
