In the given figure, lines PQ ⊥ PS, PQ || SR,
∠SQR = 28° and ∠QRT = 65°
∠PQR = ∠QRT [Alternate angles]
⇒ x + 28° = 65°
⇒ x = 65° – 28° = 37°
In ∆PQS,
∠SPQ + ∠PQS + ∠QSP = 180° [Angle sum property of a triangle]
⇒ 90° + 37° + y = 180°
[∵PQ ⊥ PS, ∠PQS = x = 37° and ∠QSP = y)
⇒ 127° + y = 180°
⇒ y = 180° – 127° = 53°
Hence, x = 37° and y = 53° Ans.
