∠CAD = ∠DBC= 70° [Angles in the same segment]

Therefore, ∠DAB = ∠CAD + ∠BAC
= 70° + 30° = 100°
But, ∠DAB + ∠BCD = 180°
[Opposite angles of a cyclic quadrilateral]
So, ∠BCD = 180° – 100° = 80°
Now, we have AB = BC
Therefore, ∠BCA = 30° [Opposite angles of an isosceles triangle]
Again, ∠DAB + ∠BCD = 180°
[Opposite angles of a cyclic quadrilateral]
⇒ 100° + ∠BCA + ∠ECD = 180° [∵∠BCD = ∠BCA + ∠ECD]
⇒ 100° + 30° + ∠ECD = 180°
⇒ 130° + ∠ECD = 180°
⇒ ∠ECD = 180° – 130° = 50°
Hence, ∠BCD = 80° and ∠ECD = 50° Ans.