Let O be the centre of the circle and let its radius be r cm.
Draw OM ⊥ AB and OL ⊥ CD.
Then, AM = 1/ 2 AB = 5/ 2 cm
and, CL = 1/ 2 CD = 11/ 2 cm
Since, AB || CD, it follows that the points O, L, M are 10 CIRCLES

collinear and therefore, LM = 6 cm.
Let OL = x cm. Then OM = (6 – x) cm
Join OA and OC. Then OA = OC = r cm.
Now, from right-angled ∆OMA and ∆OLC, we have
OA2 = OM2 + AM2 and OC2 = OL2 + CL2 [By Pythagoras Theorem]
⇒ r2 = (6 – x)2 + (5/ 2) 2 ..(i) and r2 = x2 + (11/ 2) 2 ... (ii)
⇒ (6 – x)2 + (5/ 2) 2 = x2 + (11/ 2) 2 [From (i) and (ii)]
⇒ 36 + x2 – 12x + 25/ 4 = x2 + 121/ 4
⇒ – 12x = 121/ 4 – 25/ 4 – 36
⇒ – 12x = 96/ 4 – 36
⇒ – 12x = 24 – 36
⇒ – 12x = – 12
⇒ x = 1
Substituting x =1 in (i), we get
r2 = (6 – x)2 + (5/ 2) 2
⇒ r2 = (6 – 1)2 + (5/ 2) 2
⇒ r2 = (5)2 + (5/ 2) 2= 25 + 25/ 4
⇒ r2 = 125/ 4
⇒ r = (5 \5) 2
Hence, radius r = (5\ 5) 2 cm. Ans.