Arrange the following in increasing order of their basic strength: (i) C2H5NH2, C6H5NH2, NH3, C6H5CH2NH2 and

0 votes
103 views
asked Dec 28, 2017 in Chemistry by sforrest072 (157,439 points) 63 448 1264

Arrange the following in increasing order of their basic strength:
(i) C2H5NH2, C6H5NH2, NH3, C6H5CH2NH2 and (C2H5)2NH
(ii) C2H5NH2, (C2H5)2NH, (C2H5)3N, C6H5NH2
(iii) CH3NH2, (CH3)2NH, (CH3)3N, C6H5NH2, C6H5CH2NH2.

1 Answer

0 votes
answered Dec 28, 2017 by mdsamim (213,225 points) 5 10 21
edited Dec 29, 2017 by mdsamim
 
Best answer

(i) Considering the inductive effect of alkyl groups, NH3, C2H5NH2, and (C2H5)2NH can be arranged in the increasing order of their basic strengths as:

Again, C6H5NH2 has proton acceptability less than NH3. Thus, we have:

Due to the −I effect of C6H5 group, the electron density on the N-atom in C6H5CH2NH2 is  lower than that on the N-atom in C2H5NH2, but more than that in NH3. Therefore, the given compounds can be arranged in the order of their basic strengths as:

(ii) Considering the inductive effect and the steric hindrance of the alkyl groups,
C2H5NH2, (C2 H5)2NH2, and their basic strengths as follows:

Again, due to the −R effect of C6H5 group, the electron density on the N atom in C6H5 NHis lower than that on the N atom in C2H5NH2. Therefore, the basicity of C6H5NH2 is lower than that of C2H5NH2. Hence, the given compounds can be arranged in the increasing order
of their basic strengths as follows:

(iii) Considering the inductive effect and the steric hindrance of alkyl groups, CH3NH2, (CH3)2NH, and (CH3)3N can be arranged in the increasing order of their basic strengths as

In C6H5NH2, N is directly attached to the benzene ring. Thus, the lone pair of electrons on the N−atom is delocalized over the benzene ring. In C6H5CH2NH2, N is not directly attached to the benzene ring. Thus, its lone pair is not delocalized over the benzene ring. Therefore,
the electrons on the N atom are more easily available for protonation in
C6H5CH2NH2 than in C6H5NH2 i.e., C6H5CH2NH2 is more basic than C6H5NH2. Again, due to the −I effect of C6H5 group, the electron density on the N−atom in
C6H5CH2NH2 is lower than that on the N−atom in (CH3)3N. Therefore, (CH3)3N is more basic

than C6H5CH2NH2. Thus, the given compounds can be arranged in the increasing order of their basic strengths as follows.

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

One Thought Forever

“There is a close connection between getting up in the world and getting up in the morning.“
– Anon
~~~*****~~~

...