Solution:
It is given that A and G are A.M. and G.M. between two positive numbers. Let these two positive numbers be a and b.
∴ 
From (1) and (2), we obtain
a + b = 2A … (3)
ab = G2 … (4)
Substituting the value of a and b from (3) and (4) in the identity (a – b)2 = (a + b)2 – 4ab, we obtain
(a – b)2 = 4A2 – 4G2 = 4 (A2–G2)
(a – b)2 = 4 (A + G) (A – G)

From (3) and (5), we obtain

Substituting the value of a in (3), we obtain

Thus, the two numbers are
.