(a) De Broglie wavelength of the neutron, λ = 1.40 × 10−10 m
Mass of a neutron, mn = 1.66 × 10−27 kg
Planck’s constant, h = 6.6 × 10−34 Js
Kinetic energy (K) and velocity (v) are related as:


Hence, the kinetic energy of the neutron is 6.75 × 10−21 J or 4.219 × 10−2 eV.
(b) Temperature of the neutron, T = 300 K
Boltzmann constant, k = 1.38 × 10−23 kg m2 s−2 K−1
Average kinetic energy of the neutron:

Therefore, the de Broglie wavelength of the neutron is 0.146 nm.