The gravitational attraction between electron and proton in a hydrogen atom is weaker than the coulomb

0 votes
25 views
asked Jan 10, 2018 in Physics by sforrest072 (157,439 points) 61 410 947

The gravitational attraction between electron and proton in a hydrogen atom is weaker than the coulomb attraction by a factor of about 10−40. An alternative way of looking at this fact is to estimate the radius of the first Bohr orbit of a hydrogen atom if the electron and proton were bound by gravitational attraction. You will find the answer interesting.

1 Answer

0 votes
answered Jan 10, 2018 by mdsamim (213,225 points) 5 10 15
edited Mar 6, 2018 by Vikash Kumar
 
Best answer

Radius of the first Bohr orbit is given by the relation,

Where,
0 = Permittivity of free space
h = Planck’s constant = 6.63 × 10−34 Js
me = Mass of an electron = 9.1 × 10−31 kg
e = Charge of an electron = 1.9 × 10−19 C
mp = Mass of a proton = 1.67 × 10−27 kg
r = Distance between the electron and the proton
Coulomb attraction between an electron and a proton is given as:

Gravitational force of attraction between an electron and a proton is given as:

Where,

G = Gravitational constant = 6.67 × 10−11 N m2/kg

If the electrostatic (Coulomb) force and the gravitational force between an electron and a proton are equal, then we can write:

It is known that the universe is 156 billion light years wide or 1.5 × 1027 m wide. Hence, we can conclude that the radius of the first Bohr orbit is much greater than the estimatedsize of the whole universe.

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

One Thought Forever

“There is a close connection between getting up in the world and getting up in the morning.“
– Anon
~~~*****~~~

...