R = {(P, Q): Distance of point P from the origin is the same as the distance of point Q from the origin}
Clearly, (P, P) ∈ R since the distance of point P from the origin is always the same as the distance of the same point P from the origin.
∴ R is reflexive.
Now, Let (P, Q) ∈ R.
⇒ The distance of point P from the origin is the same as the distance of point Q from the origin.
⇒ The distance of point Q from the origin is the same as the distance of point P from the origin.
⇒ (Q, P) ∈ R
∴ R is symmetric.
Now, Let (P, Q), (Q, S) ∈ R.
⇒ The distance of points P and Q from the origin is the same and also, the distance of points Q and S from the origin is the same.
⇒ The distance of points P and S from the origin is the same.
⇒ (P, S) ∈ R
∴ R is transitive.
Therefore, R is an equivalence relation. The set of all points related to P ≠ (0, 0) will be those points whose distance from the origin is the same as the distance of point P from the origin. In other words, if O (0, 0) is the origin and OP = k, then the set of all points related to P is at a distance of k from the origin. Hence, this set of points forms a circle with the centre as the origin and this circle passes through point P.