(ii) g(x) = x3 − 3x

By second derivative test, x = 1 is a point of local minima and local minimum value of g at x = 1 is g(1) = 13 − 3 = 1 − 3 = −2.
However, x = −1 is a point of local maxima and local maximum value of g at x = −1 is g(1) = (−1)3 − 3 (− 1) = − 1 + 3 = 2.