Prove that if a positive integer is of the form 6q + 5, then it is of the form 3q + 2 for some integer q, but not conversely.

0 votes
355 views
asked Jan 24, 2018 in Mathematics by Ankit Agarwal (28,847 points) 7 33 103

Prove that if a positive integer is of the form 6q + 5, then it is of the form 3q + 2 for some integer q, but not conversely.

1 Answer

0 votes
answered Jan 24, 2018 by Ankit Agarwal (28,847 points) 7 33 103
 
Best answer

Let, n = 6q + 5, when q is a positive integer
We know that any positive integer is of the form 3k, or 3k + 1, or 3k + 2
∴ q = 3k or 3k + 1, or 3k + 2
If q = 3k, then
n = 6q + 5
= 6(3k) + 5
= 18k + 5
= 18k + 3 + 2
= 3(6k + 1) + 2
= 3m + 2, where m is some integer
If q = 3k + 1, then
n = 6q + 5
= 6(3k + 1) + 5
= 18k + 6 + 5
= 18k + 11
= 3(6k + 3) + 2
= 3m + 2, where m is some integer
If q = 3k + 2, then
n = 6q + 5
= 6(3k + 2) + 5
= 18k + 12 + 5
= 18k + 17
= 3(6k + 5) + 2
= 3m + 2, where m is some integer
Hence, if a positive integer is of the form 6q + 5, then it is of the form 3q + 2 for some integer q.

Conversely
Let n = 3q + 2
We know that a positive integer can be of the form 6k + 1, 6k + 2, 6k + 3, 6k + 4 or 6k + 5
So, now if q = 6k + 1 then
n = 3(6k + 1) + 2
= 18k + 5
= 6(3k) + 5

= 6m + 5, where m is some integer
So, now if q = 6k + 2 then
n = 3(6k + 2) + 2
= 18k + 8
= 6 (3k + 1) + 2
= 6m + 2, where m is some integer
Now, this is not of the form 6m + 5
Hence, if n is of the form 3q + 2, then it necessarily won’t be of the form 6q + 5 always.

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

One Thought Forever

“There is a close connection between getting up in the world and getting up in the morning.“
– Anon
~~~*****~~~

...