(i) Let the number of rackets and the number of bats to be made be x and y respectively.
The machine time is not available for more than 42 hours.

The craftsman’s time is not available for more than 24 hours.

The factory is to work at full capacity. Therefore,
1.5x + 3y = 42
3x + y = 24
On solving these equations, we obtain
x = 4 and y = 12
Thus, 4 rackets and 12 bats must be made.
(i) The given information can be complied in a table as follows.

1.5x + 3y ≤ 42
3x + y ≤ 24
x, y ≥ 0
The profit on a racket is Rs 20 and on a bat is Rs 10.
Z=20x+10y
The mathematical formulation of the given problem is Maximize
Z =20x +10y .........(1)
subject to the constraints,
1.5x + 3y ≤ 42 … (2)
3x + y ≤ 24 … (3)
x, y ≥ 0 … (4)
The feasible region determined by the system of constraints is as follows.

The corner points are A (8, 0), B (4, 12), C (0, 14), and O (0, 0).
The values of Z at these corner points are as follows.

Thus, the maximum profit of the factory when it works to its full capacity is Rs 200.