For an hyperbola if the length of semi transverse and semi conjugate axes are equal.
Then a = b
∴ Equation of the given hyperbola is
x2 – y2 = a2 ......(1)

Let coordinates of any point P on hyperbola be (α, β). Since P lies on (1)
∴ α2 – β2 = a2 ......(2)

Now SP2 .S'P2 = (2a2 + a2 + β2)2 – 8a2α2
= 4a4 + 4a2 (α2 + β2) + (α2 + β2)2 – 8a2α2
= 4a2 (a2 – 2α2) + 4a2 (α2 + β2) + (α2+ β2)2
= 4a2 (α2 – β2 – 2α2) + 4a2 (α2 + β2) + (α2+ β2)2
= (α2+ β2)2 = CP4
∴ SP. S'P = CP2