Hey! We can surely say that the sum will be infinity.
But if we go on fun experiment then we will get the sum as -1/12. How?
Let's take sum be S
S=1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + …= ?
S1 = 1 − 1 + 1 − 1 + 1 − 1 + 1 − 1 + …
Take a negitive S1
-S1 = − 1 + 1 − 1 + 1 − 1 + 1 − 1 + …
Now 1 - S1 = 1 − 1 + 1 − 1 + 1 − 1 + 1 − 1 + …
So , 1 - S1 = S1
Hence S1 = 1/2
S2 =1 − 2 + 3 − 4 + 5 − 6 + 7 − 8 + …
S2 + S2
=1 − 2 + 3 − 4 + 5 − 6 + 7 − 8 + …
+ 0+ 1 − 2 + 3 − 4 + 5 − 6 + 7 + …
=1 − 1 + 1 − 1 + 1 − 1 + 1 − 1 + …
= S1
So,
2S2 = S1
2S2 = 1/2
S2 = 1/4
S − S2
=1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + …
− 1 + 2 − 3 + 4 − 5 + 6 − 7 + 8 + …
=0 + 4 + 0 + 8 + 0 + 12 + 0 + 16 + …
= 4( 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + … )
= 4S
So , S - S2 = 4S
Finally , S – 1/4 = 4S
⇒ S = – 1/12
Which means
S = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + …= – 1/12
Hence proved. But this answer is absolutely wrong as it breaks the sum law.