Given : Two equal chords AD and CE of a circle with centre O. When meet at B when produced.

To Prove : ∠ABC = 1/ 2 (∠AOC – ∠DOE)
Proof : Let ∠AOC = x, ∠DOE = y, ∠AOD = z
∠EOC = z [Equal chords subtends equal angles at the centre]
∴ x + y + 2z = 36° [Angle at a point] .. (i)
OA = OD ⇒ ∠OAD = ∠ODA
∴ In DOAD, we have
∠OAD + ∠ODA + z = 180°
⇒ 2∠OAD = 180° – z [ ∠OAD = ∠OBA]
⇒ ∠OAD = 90° – z/ 2 ... (ii)
Similarly ∠OCE = 90° – z/ 2 ... (iii)
⇒ ∠ODB = ∠OAD + ∠ODA [Exterior angle property]
⇒ ∠OEB = 90° – z/ 2 + z [From (ii)]
⇒ ∠ODB = 90° + z/ 2 ... (iv)
Also, ∠OEB = ∠OCE + ∠COE [Exterior angle property]
⇒ ∠OEB = 90° – z/ 2 + z [From (iii)]
⇒ ∠OEB = 90° + z/ 2 ... (v)
Also, ∠OED = ∠ODE = 90° – y/ 2 ... (vi)
O from (iv), (v) and (vi), we have
∠BDE = ∠BED = 90° + z/ 2 – (90° − y/ 2)
⇒ ∠BDE = ∠BED = y/ z + 2
⇒ ∠BDE = ∠BED = y + z ... (vii)
∴ ∠BDE = 180° – (y + z)
⇒ ∠ABC = 180° – (y + z) ... (viii)
Now, (y − z)/2 = (360o - y -2z - y) / 2
= 180° – (y + z) ... (ix)
From (viii) and (ix), we have
∠ABC = x- y / 2 Proved