A solenoid 60 cm long and of radius 4.0 cm has 3 layers of windings of 300 turns each. A 2.0 cm long wire of mass 2.5

0 votes
10 views
asked Jan 5, 2018 in Physics by sforrest072 (157,439 points) 61 410 945
edited Mar 5, 2018 by Vikash Kumar

A solenoid 60 cm long and of radius 4.0 cm has 3 layers of windings of 300 turns each. A 2.0 cm long wire of mass 2.5 g lies inside the solenoid (near its centre) normal to its axis; both the wire and the axis of the solenoid are in the horizontal plane. The wire is connected through two leads parallel to the axis of the solenoid to an external battery which supplies a current of 6.0 A in the wire. What value of current (with appropriate sense of circulation) in the windings of the solenoid can support the weight of the wire? g = 9.8 m s−2

1 Answer

0 votes
answered Jan 5, 2018 by mdsamim (213,225 points) 5 10 15
edited Mar 5, 2018 by Vikash Kumar
 
Best answer

Length of the solenoid, L = 60 cm = 0.6 m
Radius of the solenoid, r = 4.0 cm = 0.04 m
It is given that there are 3 layers of windings of 300 turns each.
Total number of turns, n = 3 × 300 = 900 Length of the wire, l = 2 cm = 0.02 m
Mass of the wire, m = 2.5 g = 2.5 × 10−3 kg
Current flowing through the wire, i = 6 A
Acceleration due to gravity, g = 9.8 m/s2

Also, the force on the wire is equal to the weight of the wire.

Hence, the current flowing through the solenoid is 108 A.

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

One Thought Forever

“There is a close connection between getting up in the world and getting up in the morning.“
– Anon
~~~*****~~~

...